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ABSTRACT

Motivation: Scanning parameters are often overlooked when optimiz-

ing microarray experiments. A scanning approach that extends the

dynamic data range by acquiring multiple scans of different intensities

has been developed.Results:Data from each of three scan intensities

(low, medium, high) were analyzed separately using multiple scan and

linear regression approaches to identify and compare the sets of genes

that exhibit statistically significant differential expression. In themultiple

scanapproachonly one-third of the differentially expressedgeneswere

shared among the three intensities, and each scan intensity identified

unique sets of differentially expressed genes. The set of differentially

expressed genes from any one scan amounted to <70% of the total

number of genes identified in at least one scan. The average signal

intensity of genes that exhibited statistically significant changes in

expression was highest for the low-intensity scan and lowest for the

high-intensity scan, suggesting that low-intensity scansmay be best for

detecting expression differences in high-signal genes, while high-

intensity scans may be best for detecting expression differences in

low-signal genes. Comparison of the differentially expressed genes

identified in the multiple scan and linear regression approaches

revealed that the multiple scan approach effectively identifies a

subset of statistically significant genes that linear regression approach

is unable to identify. Quantitative RT–PCR (qRT–PCR) tests

demonstrated that statistically significant differences identified at all

three scan intensities can be verified.

Availability:Thedatapresentedcanbeviewedat http://www.ncbi.nlm.

nih.gov/geo/ under GEO accession no. GSE3017.

Contact: schnable@iastate.edu

Supplementary information: Data from these experiments can be

viewed at http://www.plantgenomics.iastate.edu/microarray/data/

INTRODUCTION

DNA microarrays simultaneously examine the relative abundances

of thousands of transcripts in two RNA samples (Schena et al.,
1995). Microarray experiments can be divided into seven steps.

Much has been published regarding experimental design

(Churchill, 2002; Kerr, 2003; Kerr and Churchill, 2001; Simon

and Dobbin, 2003; Yang and Speed, 2002), array production

(Diehl et al., 2001; Rickman et al., 2003; Taylor et al., 2003),
RNA isolation and amplification (Baugh et al., 2001; Luo et al.,
1999; Naderi et al., 2004; Pabon et al., 2001; Van Gelder et al.,
1990; Wilson et al., 2004), labeling and hybridization considera-

tions (Heller et al., 1997; Yue et al., 2001), and downstream data

analyses (Leung and Cavalieri, 2003; Quackenbush, 2002; Slonim,

2002; Wolfinger et al., 2001). However, an often-overlooked aspect
of microarray experiments is post-hybridization data acquisition.

Although the seminal microarray publication (Schena et al., 1995)
described a data acquisition strategy using two different laser set-

tings, this approach is not used in typical microarray protocols.

Instead, most protocols recommend scanning one time per channel

at settings that minimize the number of saturated spots (Hegde et al.,
2000; Leung and Cavalieri, 2003). While this approach captures a

subset of the statistically significant differences, it potentially

excludes genes on the basis of signal intensity. Duggan et al.
(1999) reported that one of the limiting factors in microarray

experiments is signal detection for low-signal spots. Indeed, scan

intensities necessary for preventing saturation of high-signal genes

may prove inadequate for the detection of differential expression in

low-signal genes.

Procedures that correct saturated spots have been explored by

Dudley et al. (2002) and Dodd et al. (2004). Although both

procedures extend the dynamic range of the acquired data, differ-

ences in gene expression may be undetectable when the data are

analyzed as a single set. An alternative approach to obtain more

gene expression information is to independently analyze the data-

sets collected at different scan settings, and subsequently combine

all the analyses. This approach was applied to an experiment aimed

at identifying differences in transcript abundance in developing
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maize anthers. The tassel, which is the male reproductive structure

of maize, bears spikelets that contain anthers that proceed through

a series of morphologically defined developmental stages and

ultimately produce pollen.

Here we describe the analysis of multiple datasets produced by

scanning each of several microarrays at multiple intensities. Our

work was motivated by the hypothesis that the scan intensity

required to achieve resolution necessary for detecting differential

expression is inversely related to a gene’s signal intensity. Thus,

images containing low, intermediate and high numbers of saturated

spots would be expected to detect differences in gene expression

among genes that exhibit high-, medium- and low-signal strengths,

respectively. To test this hypothesis empirically, three datasets,

spanning a 20-fold difference in average signal strength, were

analyzed to identify the number of statistically significant dif-

ferences detected and the degree of overlap among the three

datasets. Additionally, the multiple-scan images were analyzed

using the linear regression (LR) procedure described by Dudley

et al. (2002). Analysis of the multiple-scan result set supports

our hypothesis and demonstrates that scanning at multiple

intensities can play an important role in acquiring data for micro-

array analyses. Furthermore, the comparison between the datasets

of the multiple-scan and the linear regression approaches

demonstrates that the multiple-scan method identifies statistically

significant differences in gene expression that the linear regression

is unable to identify.

METHODS

Plant materials and anther collection

Anthers from maize plants of the inbred line Ky21 were collected at six

distinct developmental stages and from two floret types (upper and lower).

RNA isolation and amplification

RNA was extracted from anthers using Trizol reagent (Invitrogen, Carlsbad,

CA) as per the manufacturer’s recommendations. Equal amounts of RNA

from one to four individuals per stage were pooled randomly to generate

one biological replicate. In total, 24 biological replicates (two biological

replicates per stage per floret type) were generated. Approximately 100 ng of

total RNA from each biological replicate were used as starting material for

T7-based linear RNA amplification, performed as described by Nakazono

et al. (2003).

Microarray procedures

Microarray protocols are available at http://schnablelab.plantgenomics.

iastate.edu/resources/protocols/. Fluorescently-labeled cDNAs were pre-

pared according to Nakazono et al. (2003) with slight modifications.

Only targets that contained >3000 pmol of cDNA, >60 pmol of Cy dye

and more than one dye molecule per 50 bases were hybridized to a 12 160

element cDNA microarray chip (Generation II version B) generated at Iowa

State University’s Center for Plant Genomics (http://www.plantgenomics.

iastate.edu/maizechip/).

Microarray experimental design

For each of the two biological replications, upper and lower floret samples

from each developmental stage were compared on two slides using a

dye-swap design (Kerr et al., 2000). In addition, for each experimental

replication, direct stage-to-stage comparisons were made within each floret

type using a loop design (Kerr and Churchill, 2001). Hence, considering the

two floret types, six stages and two biological replications, a total of 48 slides

were used: 12 per replication for direct floret type comparisons and 12 per

replication for stage-to-stage comparisons within floret types.

Microarray analyses

Arrays were scanned with a ScanArray 5000 (Packard, Meriden, CT). Initial

scans were conducted at 50 mm resolution, and the laser power and PMT gain

were adjusted until the ratio of the Cy3 and Cy5 channels was approximately

one for a majority of the spots. A series of six scans, in ascending order of

laser power and PMT gain, was then performed at 10 micron resolution and

50% scan rate. Initial laser power and PMT gain were �78 and 70 for Cy3,

and 75 and 57 for Cy5, respectively. For each successive scan, the laser

power and PMT gain were increased by 3–4 units and 2–3 units, respectively.

Fluorescent signal intensities were determined using ImaGene 5.0 (Biodis-

covery, Marina Del Rey, CA). For each slide, dye and scan intensity, the

median of the un-normalized log median signal intensities of all spots was

computed using the R project for statistical computing (http://www.r-project.

org/). For each slide and dye, the three scans whose medians were closest to

6.0, 7.5 and 9.0 were selected for analysis.

Linear regression of data at multiple scan settings

For each channel on two given scans, the linear regression algorithm (Dudley

et al., 2002) was applied to the background-corrected spot intensities

between the low and high detection limits at the two settings. The signal

intensities of saturated spots were iteratively and linearly extrapolated using

the unsaturated data at the low laser power and PMT setting.

Data normalization

An R implementation of the lowess normalization method (Dudoit and

Fridlyand, 2002) was used to normalize the two channels for each com-

bination of slide and scan intensity. The lowess normalization procedure

was applied to the natural log of the background-corrected median signal

intensities (median signal intensity minus the median background intensity)

computed for each spot. The average of these lowess-normalized values

across spots was computed for each slide, channel and scan intensity.

The average of these averages was 5.7, 7.2 and 8.7 for the low, medium

and high scans, respectively. The lowess-normalized data for each channel

were then centered on the average for its scan intensity so that all channels

sharing a common scan intensity would have identical averages. We refer to

these lowess-normalized and mean-centered values as normalized signal

intensities.

Statistical analysis

For each scan, a mixed linear model analysis was conducted separately for

each of 12 160 spots using a strategy similar to that of Wolfinger et al.

(2001). The mixed linear model included fixed effects for developmental

stage (six levels), floret type (two levels), stage-by-floret interaction and dye

(Cy3 or Cy5). Replication, stage-by-replication, stage-by-floret-by-

replication, slide nested within replication and an observation-specific

error term were included as random effects. These random effects were

selected to allow for correlations among observations expected to result

from the structure of the experimental design. A variety of tests were con-

ducted as part of the analysis of the data. Only the test for expression change

across stages is considered here for ease of exposition. Post-statistical

analysis, 1245 spots were excluded from downstream analysis because

the cDNA inserts from the corresponding EST clones had failed quality

tests during the PCR probe generation step.

Quantitative real-time PCR

Gene selection and primer design Seventeen ESTs that exhibited

significantly different expression for stage comparisons in at least one of the

scan settings in the microarray experiments and fold changes of �2-fold or

greater were selected for expression validation via quantitative RT–PCR

(qRT–PCR). Primers were designed such that predicted melting temperatures
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were between 58 and 61�C, lengths were between 18 and 24 bases, the

guanine–cytosine content ranged from 40 to 60% and predicted amplicon

lengths were between 80 and 200 bp. The specificity of each primer pair was

confirmed by BLAST analyses against the MAGI (http://magi.

plantgenomics.iastate.edu/) and GenBank databases.

Reverse transcription

Two stage-specific aRNA replicates were generated for each stage (exclud-

ing stage 3) by pooling equal amounts of aRNA from the upper and lower

floret samples. Each 800 ng aRNA pool was spiked with 1 ng of in vitro

transcribed RNA from a human gene (GenBank accession no. AA418251)

and used as template for reverse transcription as described by Nakazono

et al. (2003), except that both oligo(dT) and random hexamers were used as

primers.

Quantitative real-time PCR All 17 primer pairs yielded an appar-

ently single amplicon (as determined by via agarose gel electrophoresis and

dissociation curve analysis) and exhibited primer efficiencies with a cor-

relation coefficient >0.99. These primer pairs were used for qRT–PCR

analysis on an ABI GeneAmp 5700 sequencing detection system using

SYBR Green I master mix (Applied Biosystems, Foster City, CA). Forty

cycles of PCR were performed on each primer pair at an annealing temper-

ature of 60�C, 200 nM each primer and 1 mM magnesium chloride with a

1:200 dilution of each cDNA pool (per biological replicate) as template;

reactions were performed in triplicate. The E-value (i.e. 1 + PCR efficiency)

was obtained from the dilution curve and the mean Ct values of each sample

for all genes were calculated and used for fold-change calculations as

described in Pfaffl (2001).

RESULTS

Selection of low-, medium- and high-intensity scans

Relative levels of transcript abundance in developing maize anthers

were compared at six developmental stages using cDNA microar-

rays (Supplementary Figure 1). We hypothesized that images

obtained using low-, intermediate- and high-scanning parameters

would be expected to detect differences in gene expression among

genes that exhibit high-, medium- and low-signal strengths, respect-

ively. To test this hypothesis, each hybridized microarray was

scanned six times in ascending order of laser power and PMT

gain. Scans with median values of �6.0, 7.5 and 9.0 for the natural

log of the signal median intensity of the non-normalized data were

classified as low-, medium- and high-intensity scans, respectively.

Therefore, the low- and medium-intensity scans, and medium- and

high-intensity scans differ by 4.5-fold signal strength, whereas the

signal strengths of the low- to high-intensity scans differ by 20-fold.

Figure 1 shows representative low-, medium- and high-intensity

scan false-color images generated by the ScanArray software for

a single region of one array.

Statistical analysis

Separate, equivalent statistical analyses were performed on the

low-, medium- and high-intensity scan normalized datasets

using a mixed linear model similar to that described by

Wolfinger et al. (2001). As part of the mixed linear model analyses

performed for each scan, tests for stage main effects were conducted

for each of the 12 160 spots. The tests for stage main effects identify

genes whose expression differed significantly across developmental

stages.

Identification of statistically significant differences

A histogram of P-values corresponding to the tests for stage main

effects from the medium intensity scan dataset is depicted in

Fig. 1. Representative examples of low, medium, and high-intensity scans.

Images were acquired from the same array by scanning in ascending order of

laser power and PMT gain to generate the low (A), medium (B), and high (C)

intensity scans. False-color images generated by the ScanArray software are

shown based on signal intensity. The false-color scale, in ascending order of

signal strength, is black (no detectable signal), blue, green, yellow, orange,

red, and white (saturation).

Fig. 2. Distribution of the stage P-values for the medium-intensity scan. The

overabundance of genes with statistically significant differences for the small

P-values indicates that many genes are differentially expressed across stages.
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Figure 2. If no genes were differentially expressed across stages, the

histogram would be expected to exhibit a uniform (i.e. flat) shape.

Instead, there is a clear overabundance of small P-values, suggest-
ing that many genes exhibited differential expression across stages.

The analogous P-value histograms for the low- and high-intensity

scans are highly similar (data not shown). The P-values for all 398
statistically significant genes at each of the scan intensities are

provided in Supplementary Table 1.

Distribution of significant differences

among the three scans

At the 0.001 P-value threshold for significance, the estimated false

discovery rate was below 2% [as calculated using the method

described by Storey and Tibshirani (2003), for each family of

tests]. Using the 0.001 P-value threshold, a total of 398 non-

redundant, statistically significant differences were detected in

the stage comparisons after combining statistically significant dif-

ferences from the low, medium and high datasets.

Comparisons among statistically significant genes from the low,

medium and high datasets revealed that 32% were identified in all

three scan intensities and each scan intensity identified 8–14% of

unique spots (Fig. 3). Using a single-scan approach (i.e. low,

medium or high) �70% of the total non-redundant significantly

different spots from the combined dataset were detected (Fig. 4).

By combining two of the scan intensities, 86–92% of the total

non-redundant significantly different spots were identified, and

the addition of a third scan resulted in an 8–14% increase in the

number of statistically significant differences detected for the stage

comparison (Fig. 4).

P-value comparisons between the low and high scans

Figure 5 shows a scatter plot of �log base 10 of the stage P-values
from the high-intensity scan against �log base 10 of the stage

P-values from the low-intensity scan. Points in the upper and

lower right quadrants of the plot represent genes whose stage

P-values were <0.001 for the low scan data, and points in the

upper left and right quadrants of the plot represent genes whose

stage P-values were <0.001 for the high scan data. Although there is
a strong correlation between the two sets of P-values, there are

many genes for which the high- and low-intensity scans yield

different conclusions.

Relationship between signal strength and identification

of significant differences

An example of a gene (Gene #4318; GenBank accession

no. DV492499) exhibiting statistically significant differences in

the low-intensity scan but not in the high-intensity scan is presented

in Figure 6. The two plots show the normalized log-scale signal

intensities from the low- and high-intensity scans. The lines in each

plot connect pairs of points obtained from a single slide. Solid and

dashed lines represent slides from the first and second replications

of the experiment, respectively. To improve clarity of the plots, data

from slides corresponding to within-stage comparisons of floret

types have been omitted from the plots. In the two plots, data

from the low-intensity scan provide strong evidence of an increase

in expression at stage 4 (stage P-value ¼ 0.00038), while data from

the high intensity scan provide little evidence of a statistically

significant difference among stages (stage P-value ¼ 0.33995).

Interestingly, Gene #4318 has a high average signal intensity at

each scan intensity; its within-scan average signal across all studied

conditions exceeds the within-scan average signal of over 99% of

the arrayed genes, regardless of the scan intensity considered.

The data for Gene #4318 depicted in Figure 6 illustrate a more

general phenomenon: differential expression in high signal strength

genes tends to be more readily detected with the low-intensity scan

than with the high-intensity scan. To test whether this holds true

more generally, the mean expression value for each differentially

expressed gene (P-value � 0.001) detected by each of the low-,

high- and medium-intensity scans was plotted. In Figure 7 the mean

signal of a gene refers to the average normalized log-scale signal of

the gene over all three intensity scans and all conditions studied in

the experiment (an average of 3 · 96¼ 288 values). The distribution

of mean signal values of detected genes decreases as the scan

intensity increases. This indicates that the significantly different

genes identified by the low-intensity scan tend to have a higher

signal strength than significantly different genes identified by the

medium-intensity scan, and that the significantly different genes

identified by the medium-intensity scan tend to have higher signal

strength than significantly different genes identified by the high-

intensity scan.

Only significantly different genes with P-values �0.001 were

selected in Figure 7. However, the trend depicted in Figure 7 persists

for a variety of other criteria for differential expression, including

P-value thresholds ranging from 0.0001 to 0.05 and q-value
thresholds (Storey and Tibshirani, 2003) ranging from 0.01 to

0.05 (data not shown).

Figure 8 shows the relationship between the mean signal across

all experimental conditions in the high- and low-intensity scans for

all of the genes on the microarray. The vertical trend in the lower left

corner of the plot indicates that the high intensity scan detected

much more variation among the genes with the lowest signal

strength. The horizontal trend in the upper right corner of the

plot indicates that the low scan detected greater variation among

the genes with the highest signal strength. This latter trend is prim-

arily due to saturation of spots associated with high-signal genes

scanned at high intensities. The plot is consistent with the idea that

low intensity scans will provide better resolution of detecting

Fig. 3. Determination of the extent of overlaps among the low-, medium- and

high-intensity scans. The three circles indicate the subsets of statistically

significant differences identified by the low-, medium- and high-intensity

scans for the stage comparisons. The numbers within the circles represent the

percent of the non-redundant, statistically significant differences identifiedby

each scan type. For the stage comparisons, a total of 398 non-redundant,

statistically significant differences were identified at P¼ 0.001.
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differential expression among high signal genes while high intensity

scans will provide better resolution for detecting differential expres-

sion for genes with lower signal levels.

Comparison of multiple-scan and

linear regression methods

The linear range of signal for saturated spots can be extended by

applying a linear regression model (Dudley et al., 2002). This
algorithm corrects saturated signals by extrapolating the signal

strength from low intensity scans. This algorithm was applied to

the low, medium and high datasets (LR-LMH) to compare the

resulting datasets with the multiple-scan method. The LR-LMH

dataset yielded 291 statistically significant differences.

Investigation of the overlap between the P-values from the mul-

tiple scan and LR-LHM analyses is shown in Figure 9. Overall,

there is a strong correlation between the two sets of P-values.
However, the multiple scan approach is able to identify statistically

significant differences (P < 0.001; Fig. 9, quadrants II and III) that

were not detected by the LR approach. Conversely, the LR approach

identified very few statistically significant differences (P < 0.001)

Fig. 4. The number of statistically significant differences that can be detected increases when the datasets from multiple scan intensities are combined. Scan

intensities are: L¼Low, M¼Medium, H¼High, L+M¼Low and Medium, L+H¼Low and High, M +H¼Medium and High, L +M+H¼Low, Medium

and High.

Fig. 5. Comparison of the stage P-values from the high- and low-intensity

scans. Points represent individual spots. Points in the upper right quadrant are

statistically significant (P� 0.001) for both the low- and high-intensity scans,

points in the lower left quadrant are not statistically significant for either scan,

points in the upper left quadrant are statistically significant for the high-

intensity scan but not the low-intensity scan, and points in the lower right

quadrant are statistically significant for the low-intensity scan but not the

high-intensity scan.

Fig. 6. Detailed examination of the signal intensity of a gene at low and high

scan intensities. Gene #4318 was statistically significant for the low (A), but

not the high (B), intensity scan in the stage comparison. Normalized expres-

sion for the statistically significant genes is plotted against stage.
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that the multiple scan approach failed to identify (Fig. 9,

quadrants IV and V).

Validation of microarray results using qRT–PCR

Supplementary Figure 2 shows a plot of the log2 fold change estim-

ated from qRT–PCR versus the log2 fold change estimated from our

microarray experiment. The correlation between the estimates was

0.773. There were two outlying points where the qRT–PCR and

microarray estimates differed substantially. Without these points,

the correlation was 0.899. Both correlations were statistically

significant at well below the 0.001 level. For one of the outlying

points (spot 768), the direction of the fold change according qRT–

PCR was completely reversed from that estimated by microarray. In

the other case (spot 8911), the qRT–PCR and microarray experi-

ments both suggested a large fold change in the same direction, but

the qRT–PCR results were more extreme than those obtained from

microarrays. The direction of fold change estimated by microarray

was the same as that estimated by qRT–PCR for 16 of the 17 genes.

The fold change estimated from the microarray experiment along

with the fold change estimates for each biological replication of the

qRT–PCR experiment are provided for all 17 genes in Supplement-

ary Table 2.

DISCUSSION

Because DNA microarray experiments are multi-faceted and

complex, researchers are faced with many decisions, including

determining the most efficient method to extract meaningful

Fig. 7. Mean signal distribution for genes withP-values� 0.001 for the low-,

medium- and high-intensity scans for the stage comparisons.Mean signalwas

calculated by averaging expression values of each statistically significant

gene over all three intensity scans and all conditions studied in the experiment

(an average of 3 · 96¼ 288 values).

10
8

6
4

2

0 2 4 6 8 10

Fig. 8. A comparison of the mean signal for all genes on the microarray

between the high- and low- intensity scans across all experimental conditions.

Themean signal levels are lowest at the intersection and highest at the right of

the x-axis and top of the y-axis.

Fig. 9. A comparison of the P-values from the LR-LMH and the multiple-

scan union datasets at twoP-value thresholds. For each spot (represented as an

open circle), the P-value of the multiple-scan union is the minimum P-value
among the three datasets. Quadrant I contains spots with P� 0.001 for both

themultiple-scan union and the LR-LMHdatasets; Quadrant II contains spots

with P� 0.001 for the multiple-scan union and 0.001�P� 0.005 for the

LR-LMHdataset; Quadrant III contains spotswithP� 0.001 for themultiple-

scan union and P� 0.005 for the LR-LMH dataset; Quadrant IV contains

spots with P� 0.001 for the LR-LMH and 0.001� P� 0.005 for the

multiple-scan union; Quadrant V contains spots with P� 0.001 for the

LR-LMH and P� 0.005 for the multiple-scan union.
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data. One often-overlooked aspect of microarray experiments is

data acquisition. Most protocols recommend scanning at laser set-

tings that decrease the number of saturated spots. While this

approach captures a subset of the statistically significant differ-

ences, it potentially excludes genes on the basis of signal intensity.

By conducting separate analyses of data obtained using different

scan intensities, we have demonstrated that no single scan intensity

is optimal for all genes. Each scan intensity identified a unique set of

statistically significant differences in gene expression; only approx-

imately one-third of the statistically significant differences were

detected in all the three scan intensities (Fig. 3). By combining

the statistically significant datasets of three of the scan intensities,

30–40% and 10–15% more statistically significant differences are

detected than single scan intensity and double scan intensity

approaches (Fig. 3). Furthermore, the low intensity scan tended

to identify high signal strength genes, whereas the high intensity

scan tended to identify the low signal strength genes (Figs 7 and

8). One unexpected finding was that genes with low signal intensity

were also identified (and validated) from the low intensity scan. This

result could be explained by the high signal-to-noise ratio at the low

scan settings (data not shown).

Signal detection for low signal strength spots is a limiting factor

for the detection of statistically significant differences in microarray

experiments (Duggan et al., 1999). Furthermore, low signal strength

spots often exhibit pixilation, which contributes to variability

(Romualdi et al., 2003). These low signal strength spots would

be expected to be prevalent in the low intensity scans (Fig. 1a).

However, as scan intensity increases, the proportion of low intensity

spots decreases (Fig. 1b and c). The observation that the mean signal

of the significantly different spots is inversely related to the scan

intensity (Fig. 7) supports the conclusion that high intensity scans

can increase the power for detecting expression differences in low

signal genes.

Conversely, some spots on the array exhibit high signal intensity

relative to the majority of the spots. When the signal from these

spots becomes saturated for each channel, differences in transcript

abundance cannot be detected. Therefore, to identify differences in

gene expression for these spots, it is important to lower the laser

settings until the spots are no longer saturated.

If pronounced, photobleaching (Nagl et al., 2005) could affect our
multiple scanning strategy. To directly test the degree of photo

bleaching under our conditions, a slide hybridized with Cy3 and

Cy5 was scanned 15 times for each channel. In the Cy5 channel after

an initial drop (�25%) in the median intensity the remaining scan

medians dropped only �4% from one scan to the next. The Cy3

channel also exhibited an initial drop (�20%) in median intensity

but over the next four scans exhibited an increase in median intens-

ity before leveling off for the remainder of the scans. Hence, and in

agreement with the results of Romualdi et al. (2003), we conclude
that the effects of photobleaching are modest, at least when using

the protocols described here.

Recommendations for researchers using

cDNA microarrays

Although scanning is often overlooked as an important factor for

microarray experiments, the results presented here demonstrate that

scanning parameters can substantially affect the dataset generated.

Unfortunately, many authors fail to report scanning parameters.

We, therefore, recommend that authors report their scanning

parameters.

Scanning at multiple intensities is a cost-effective method for

extracting additional information at a minimal cost. The most

effective method for maximizing the signal-to-noise ratio across

multiple scan settings is to increase the laser power and keep the

PMT gain constant (X. Zhao and L.A. Borsuk, unpublished data).

We, therefore, encourage researchers using microarrays to scan at

multiple intensities because no one scan intensity can be expected to

maximize the power to detect differential expression for genes of

varying signal strength. Although the scan intensity levels and

analyses described here were useful for identifying differential

expression in genes of varying signal strength, development of

an optimal scanning and data analysis strategy remains an area

for further investigation.
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